Generalized fermionic discrete Toda hierarchy
نویسندگان
چکیده
منابع مشابه
Toda Lattice Hierarchy and Generalized String Equations
String equations of the p-th generalized Kontsevich model and the compactified c = 1 string theory are re-examined in the language of the Toda lattice hierarchy. As opposed to a hypothesis postulated in the literature, the generalized Kontsevich model at p = −1 does not coincide with the c = 1 string theory at self-dual radius. A broader family of solutions of the Toda lattice hierarchy includi...
متن کاملThe multicomponent 2D Toda hierarchy: Discrete flows and string equations
The multicomponent 2D Toda hierarchy is analyzed through a factorization problem associated to an infinitedimensional group. A new set of discrete flows is considered and the corresponding Lax and Zakharov–Shabat equations are characterized. Reductions of block Toeplitz and Hankel bi-infinite matrix types are proposed and studied. Orlov–Schulman operators, string equations and additional symmet...
متن کاملFermionic flows and tau function of the N = ( 1 | 1 ) superconformal Toda lattice hierarchy
An infinite class of fermionic flows of the N=(1|1) superconformal Toda lattice hierarchy is constructed and their algebraic structure is studied. We completely solve the semi-infinite N=(1|1) Toda lattice and chain hierarchies and derive their tau functions, which may be relevant for building supersymmetric matrix models. Their bosonic limit is also discussed. 1. Introduction. Recently the N=(...
متن کاملA note on fermionic flows of the N=(1|1) supersymmetric Toda lattice hierarchy
We extend the Sato equations of the N=(1|1) supersymmetric Toda lattice hierarchy by two new infinite series of fermionic flows and demonstrate that the algebra of the flows of the extended hierarchy is the Borel subalgebra of the N=(2|2) loop superalgebra. PACS: 02.20.Sv; 02.30.Jr; 11.30.Pb
متن کاملThe Toda Hierarchy and the Kdv Hierarchy
McKean and Trubowitz [2] showed that the theory of the KdV equation ∂ ∂t g(x, t) = ∂ 3 ∂x 3 g(x, t) − 6g(x, t) ∂g ∂x (x, t). is intimately related to the geometry of a related hyperelliptic curve of infinite genus, the Bloch spectrum B g t of the operator L g t : ψ → d 2 dx 2 ψ(x) + g(x, t)ψ(x), where g t = g(x, t). As was known classically, B g t is independent of t, when g(x, t) evolves accor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2004
ISSN: 1026-0226,1607-887X
DOI: 10.1155/s1026022604311027